You are to design a suitable wing for a sport RC electric aircraft to the following low-speed requirements:

density: $\rho = 1.2 \,\mathrm{kg/m^3}$

low speed: V = 6 m/s = 13.4 mphhigh speed: V = 12 m/s = 26.8 mphweight: W = 3.0 N = 11 ozspan: b = 1.8 m = 71 in

Assume an elliptic load distribution $\Gamma(y) = \Gamma_0 \sqrt{1 - (2y/b)^2}$. Assume $dc_\ell/d\alpha = 2\pi$ for the wing airfoils.

Assume a spanwise-constant $c_{\ell} = 0.8$ for the low-speed case in level flight. Also assume the wing reference line (e.g. fuselage axis) is aligned with the flight direction in the low-speed case, so that $\alpha = 0^{\circ}$.

- 1a) Determine the chord distribution c(y) and sketch the planform.
- 1b) Determine $\alpha_{\text{aero}}(y)$.
- 1c) What will $\alpha_{\text{geom}}(y)$ look like if the same cambered airfoil is used all across the span?
- 1d) Determine the wing's C_{D_i} . If the airfoil's profile drag is $c_d \simeq 0.015$, estimate the overall L/D ratio of the wing.

The wing designed above must also operate at the high speed condition in level flight.

- 2a) Still assuming an elliptic load distribution, determine the necessary Γ_0 for this case.
- 2b) Determine α_i , and the overall α for this speed.
- 2c) If the airfoil's profile drag is still $c_d \simeq 0.015$, determine C_{D_i} and the overall L/D